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Goal-oriented representations in the human hippocampus

during planning and navigation



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

This study aims to investigate how the hippocampus represents goals and contextual information 
during navigation. Participants completed a novel task in which they had to navigate around a ‘zoo’ 
while undergoing fMRI. Prior to entering the scanner, participants learned the layout of two distinct 

zoo ‘contexts.’ In each context, nine animals were arranged in a cross. In the scanner, participants 
completed 6 runs of the navigation task; each run included 8 blocked trials within a particular zoo 

‘context’ followed by 8 trials in the other context. On every trial, participants saw a cue that depicted 
their starting animal location and animal location goal; they then used buttons to navigate from the 

starting location to the goal, viewing the animals they ‘passed through’ on their way. The researchers 
examined hippocampal pattern similarity within and between cue presentation on same-sequence, 
‘converging’ (same goal), ‘diverging’ (same starting point trials, and no-overlap trials, both within and 

across contexts. Within a context, both same-sequence cues and converging cues were more similar 
to other same-sequence cues and converging cues, respectively, than they were to diverging or no-

overlap cues. In addition, the researchers examined timepoint-by-timepoint hippocampal pattern 
similarity within converging and diverging sequences over the course of the trial. They found that 
pattern similarity between the first and third time point was higher for converging relative to diverging 

sequences. The researchers interpret these findings as indicating that the hippocampus represents 
contextual information about future states during goal-directed navigation, prioritizing goal- or sub-

goal-relevant information. 

Overall, this study uses a cleverly designed behavioral experiment to address an interesting question 

about hippocampal representations during goal-directed planning and navigation. However, I am not 
sure that the analyses presented here substantively advance our understanding of this topic, or that 

the authors’ conclusions are fully justified based on the analyses and results described. 

Broadly, the main finding of this study seems to be that at the start of sequential decisions, the 
hippocampus represents both contextual information and goal states. The notion that the 
hippocampus carries such information is not particularly novel. Indeed the authors review a number of 

prior findings demonstrating both goal encoding and contextual representations in the hippocampus. 
Moreover, in this task, both the goal state and the context are explicitly cued prior to each trial, which 

makes the fact that the hippocampus encodes this information especially unsurprising. While 
analyses are conducted that demonstrate representational similarity for shared destination trials than 
shared initial path trials (i.e., converging versus diverging trials), neither converging or diverging trial 

types exhibited significantly different pattern similarity than trials that had no path overlap, which calls 
into question the robustness of the effect. 

The authors also conduct timepoint-by-timepoint analyses in which they test for evidence of 
prospective representation of future states, and find evidence of greater pattern similarity between the 

first and third time point for converging relative to diverging sequences. They interpret the results from 
these analyses as suggesting that for converging sequences, at State 1, participants represent State 

3 (the center of the ‘maze’ in which they must make a turn toward the final goal). However, it is 
unclear why this relation should be stronger for converging vs. diverging sequences, since both 

groups of sequences share State 3. One control analysis that might strengthen this interpretation 
would be if the authors compared State 1 pattern similarity for all sequences that share the same 
State 3 and all those that do not. If pattern similarity at State 1 is higher for sequences that share the 

same State 3, this would strengthen the interpretation that the hippocampus represents the relevant 
subgoal at the first state. 

In sum, I’m not sure that the findings presented in this paper afford a greater understanding of the role 
of the hippocampus in planning or navigation. 

Below are a few suggestions for additional analyses or revisions: 



Given the strong effects of context in the first set of hippocampal pattern similarity analyses, it seems 
as though the authors should also break down their time-point analyses by context. If the 

hippocampus is indeed carrying contextual information, then the expected differences in converging 
vs. diverging sequences may be obscured by this added ‘noise.’ 

The introduction section was not particularly focused. It read more like a review paper than an 
exposition of the background and motivation for a specific empirical research question. 

The introduction of the successor representation predictions and analyses in the discussion feels 

somewhat out of place. 

Minor points: 

Were trials in which participants made navigation mistakes excluded from neural analyses? 

The authors note they used likelihood ratio tests to examine the significance of the fixed effects within 
their mixed-effects models, which only included random subject intercepts. This combination of 
intercept-only models and likelihood ratio tests is the least conservative way to test the significance of 

fixed effects (highest Type I error rates). Though the authors note the maximal models did not 
converge, they could further try: 

- First removing the correlations between random slopes and intercepts 
- Removing interaction terms in the random effects 
- Removing just the random slope for the fixed effect that explains the least variance 

- Using different optimizers 

In addition, the authors could test the significance of their fixed effects via F tests. 

Reviewer #2 (Remarks to the Author): 

The Authors present a very nicely written manuscript investigating the involvement of the 
hippocampus during sequence navigation. They find that both planning and active movement through 
decision space modulate hippocampal activity in a context-dependent way, and show evidence that 

supports an alternative explanation of hippocampal coding to current goal states and those predicted 
by the successor representation. They find the hippocampal activity is highly context and goal 

dependent, and they support this with some very elegant control analysis. I found the study and 
analyses to be sound, but I would like to request some clarification on some of the results. 

The comments are in chronological order (as manuscript was read): 

In the text it says: p3 > p4, z = 2.536, p = 0.0112, but Figure 1 shows p=0.055 for that comparison, 
please indicate which it is. 

The caption of Figure 2D says 'same context', is it meant to be 'different'? Relatedly, in the text (page 
10 bottom) it seems that only the stats for panel C (within context) are reported. I was wondering what 

it means that between contexts, there is a significant effect of same sequence and converging 
sequences - i assume this means that the hippocampus is representing future goal states, but it is 

also context modulated (significant interaction). Are the values in the between context analysis 
significantly different from those in the within context analysis? Where could this context signal come 
from - is it possible to look at prefrontal areas to establish whether there is a context signal there 

driving the hippocampus? (especially as the task was blocked for context) 

In caption S2: 'χ 2 (2, N = 23) = 40.40, p < 0.0001' is repeated and the word 'interaction' is in the 



wrong place? (before p value). I really like these control analyses. 

I find this section (page 16) a little confusing, because it reads as if the predictions would be early 
similarity for both convergent and divergent sequences (and the divergent show no such effect 

anyway). Also, was the statistical map also looked for the opposite subtraction,ie. D-C?) 
"In this case, we would expect to see higher off-diagonal pattern similarity in 
converging sequences, such that across converging sequences, activity patterns 

associated with goal states would be correlated with activity patterns during earlier 
positions in the sequences. This effect should be higher for converging sequences than 

for diverging sequences because activations of state-action pairs should become more 
similar later in the sequence. Conversely, diverging sequence state-action pairs should 

be more similar earlier in the sequence but then decrease as the sequence progresses." 

Relatedly, both from the timing of the clusters and the timecourse in Figure 4, it seems that it was 

actually position 4, rather than 5, that was reactivated, if at all (given this didn't survive MCC). 
However, I assume that after the decision point (P3), there was no need to necessarily plan ahead, as 

from then onwards, the same button presses need to be made. So to me, given this design, it makes 
sense that P3 is the most important (sub)goal, although I would then expect it in both convergent and 
divergent routes (if anything more in the latter, where different plans must be made at P3). 

In light of this, I do not think this statement in the Discussion is accurate: 'Similarly, during navigation, 
we found that the hippocampus prospectively 

activated information about upcoming states and that this effect was strongest in relation to key 
decision points and goals.' As goals were not significantly activated (p1 to p5 or p3 to p5). 

Additionally, while the single subject maps are appreciated, it does seem that participant 19 is 
perhaps driving the group effect p1 to p3, as in the other subject plots, by eyeball, there isn't any clear 

evidence of this, if anything p5 seems to be most activated. Also, are the corrected deltaPS values in 
Figure S4 significant for either V1 or BA? as they also show p1 to p3 effects. 

Comment (without having any personal stake in the validity of SR or any other theory): is it possible 
that with short and/or 'linear' routes, like in this task, there is no need to represent an elaborate 

transition structure? Perhaps if the sequence was longer or involved multiple choice points, the 
convergent/divergent effects would change. Relatedly, previous studies on hippocampal coding of 

distance often show correlations with differing directions - more/less hippocampal activity 
closer/further from the goal. My assumption, at least in these studies (as in Fig 3 of review by Spiers 
& Barry 2015 COBS, or even Figure 2 Patai 2019 Cerebral Cortex) is that there is an effect of 

environmental complexity / path complexity that contributes to these disparate findings. It is possible 
that the structure of the decision or state or physical space will have profound effects as to how the 

hippocampus is coding the relevant goal information. 

For the TR analysis, were there any effects of the repetition of sequences across runs? Did earlier vs 

later repetitions show differing effects on the converging/diverging sequence analysis? I understand 
the sequences were very well learned, but it would be curious to know how repeating sequences 

affects the hippocampal representation. Relatedly, I assume the answer is yes, but just to check, were 
the 8 within context sequences presented in a block also counterbalanced? That is, it didn't always 

start with zebra to tiger etc. And equally, there wasn't any grouping of routes that were subsequently 
defined as convergent/divergent? 

Reviewer #3 (Remarks to the Author): 

The authors present a very interesting and timely study of how goal-oriented representations in the 
human hippocampus manifest in spatially-grounded sequence processing. In particular, they tackle 

the question of how overlap affects the expression of these codes, and their results suggest that 1) 



hippocampal representations of future states emerge in a context-bound manner and 2) their 
expression is modulated in a dynamic way by how the memory crosses paths with others. 

I was generally very enthusiastic about this work, and the methods employed (which were largely 

clearly presented as well), and the bigger questions it addresses in the literature. I did have several 
comments and concerns on interpretational and methodological points that I believe could strengthen 
the manuscript further when addressed. 

1. I think when the authors argue for a positive modulation of similarity by goal that can’t be explained 

by modulation by shared motor plans, they could test for a significant interaction between the two goal 
and move-set dimensions to formally demonstrate that the modulation is more strongly driven by the 

goal representation in a specific context than the move sequence. However, I would also add that I’m 
not sure a null interaction (should that be the case) would detract much from the manuscript. This is 
because although move sequences are motoric, they also correspond to location and heading shifts, 

which are reflected in the behavior of some neurons of the hippocampal system in rodents. 

2. This reasoning led me to a related comment: did the authors consider testing a more hierarchical 
coding perspective? Akin to McKenzie …Eichenbaum, 2014, it seems highly likely that even if there is 
a relative dominance of goal coding, it could be quite informative to think about how this is modulated 

but “subordinate” representations of other dimensions of the task. 

3. Were timecourses time-shifted for interpretation of when representational information emerged? 
That is, when the authors attribute a TR pattern to time position 3, is that adjusted for lag in the 
hemodynamic response that state (say, taking ~TR 3 after position 3)? 

4. A related comment is that the authors describe these (very interesting!) timecourse outcomes as 

“the first item in the sequence activating the central position” -> yet directionality cannot be assessed 
from this alone. This is interesting to consider, because it is noteworthy that it is for the diverging 

routes, moreso than the converging routes, that there is an alternative decision about future state 3 
that could be prospectively made at time 1. At least, computing this sequence element in advance 
may be more behaviorally-beneficial than look-ahead to a choice that simply leads to the same 

stimulus regardless of route (the converging scenario). Could their pattern similarity outcome instead 
reflect a representation of the alternative starting path at the point in the environment where they 

intersect (that is, when arriving at state 3, a representation of the other memory leading to this state is 
elicited)? In theory, I do think the high p1-p1 similarities for converging routes speak against this prior 
notion somewhat, however (but please see next comment). 

5. Yet, it is also troubling that in both the converging and diverging cases the pattern similarity is high 

early (e.g., p1-p1) but declines uniformly forward in time even on the diagonal (also relevant to my 
query about time-shifting in the analysis). This also results in little evidence of the goal or “goal arm 
sequence” itself being instantiated earlier (i.e., p1-end similarity). This result from the timecourse 

analysis suggests the main trial-level analysis results using LSA may be tracking an early abstracted 
state in the trial more than a representation that is present at the goal itself. I found this difficult to 

interpret, even though I agreed with the authors’ statements to the effect that the data seemed to be 
about an abstract goal more than specific stimuli. 

This fading in similarity later in the trial, even in a converging arm case where the goal and items 
could be the same) did leave me wondering if there is a chance there could be an impact of the TR-

by-TR FIR modeling approach. Although the FIR predictors are not fit sequentially (that I can tell) – 
could later points in the time window are more driven by noise than signal, perhaps due to an artifact 

of some structure in the collinearity of the FIR hrf predictors? Some deeper discussion of this pattern 
in the results, and perhaps potential impact of modeling could strengthen the arguments made. 

Minor: 
In the methods, the authors describe the timeseries analysis as yielding “72 voxel timeseries” but I 

believe this is a typo 



I thought it could be worth a Discussion sentence or two juxtaposing the current study results more 
directly with the Chanales… Kuhl 2017 paper, which the authors did cite. Despite some differing 

outcomes, the there are a lot of structural similarities in the environment, and a small comment on this 
may prompt formal comparative research ideas. 



 

REVIEWER COMMENTS (in black) and Responses (in blue) 

 

We appreciate the reviewers’ enthusiasm for our work and constructive comments about how we 

could improve the manuscript in a revision. We have addressed all of the reviewers’ comments 

below and we have incorporated these changes into our manuscript, as indicated below.   

 

Reviewer #1 (Remarks to the Author): 

 

This study aims to investigate how the hippocampus represents goals and contextual information 

during navigation. Participants completed a novel task in which they had to navigate around a 

‘zoo’ while undergoing fMRI. Prior to entering the scanner, participants learned the layout of 

two distinct zoo ‘contexts.’ In each context, nine animals were arranged in a cross. In the 

scanner, participants completed 6 runs of the navigation task; each run included 8 blocked trials 

within a particular zoo ‘context’ followed by 8 trials in the other context. On every trial, 

participants saw a cue that depicted their starting animal location and animal location goal; they 

then used buttons to navigate from the starting location to the goal, viewing the animals they 

‘passed through’ on their way. The researchers examined hippocampal pattern similarity within 

and between cue presentation on same-sequence, ‘converging’ (same goal), ‘diverging’ (same 

starting point trials, and no-overlap trials, both within and across contexts. Within a context, both 

same-sequence cues and converging cues were more similar to other same-sequence cues and 

converging cues, respectively, than they were to diverging or no-overlap cues. In addition, the 

researchers examined timepoint-by-timepoint hippocampal pattern similarity within converging 

and diverging sequences over the course of the trial. They found that pattern similarity between 

the first and third time point was higher for converging relative to diverging sequences. The 

researchers interpret these findings as indicating that the hippocampus represents contextual 

information about future states during goal-directed navigation, prioritizing goal- or sub-goal-

relevant information. 

 

Overall, this study uses a cleverly designed behavioral experiment to address an interesting 

question about hippocampal representations during goal-directed planning and navigation. 

However, I am not sure that the analyses presented here substantively advance our understanding 

of this topic, or that the authors’ conclusions are fully justified based on the analyses and results 

described. 

 

 

1) Broadly, the main finding of this study seems to be that at the start of sequential 

decisions, the hippocampus represents both contextual information and goal states. The 

notion that the hippocampus carries such information is not particularly novel. Indeed the 

authors review a number of prior findings demonstrating both goal encoding and 

contextual representations in the hippocampus. Moreover, in this task, both the goal state 

and the context are explicitly cued prior to each trial, which makes the fact that the 

hippocampus encodes this information especially unsurprising. While analyses are 

conducted that demonstrate representational similarity for shared destination trials than 

shared initial path trials (i.e., converging versus diverging trials), neither converging or 

diverging trial types exhibited significantly different pattern similarity than trials that had 

no path overlap, which calls into question the robustness of the effect. 



 

 

 

 

Response #1 

 

We thank Reviewer 1 for raising these points and appreciate the opportunity to demonstrate both 

the novelty and robustness of our experimental findings.  

 

We now realize that the introduction of our original submission did not clearly convey the major 

disconnect in the literature. There is now a large body of neuroimaging work on representation of 

abstract state spaces in the hippocampus, and this work has been guided by theories that rely 

heavily on studies of hippocampal place cells during random foraging. Tolman (1948), however, 

proposed the concept of the cognitive map to explain how mammals can flexibly plan routes in 

order to actively navigate towards a goal. Based on what is known about hippocampal activity 

during planning or goal-directed spatial navigation, there is reason to believe that planning and 

navigation in abstract spaces might emphasize goals, rather than representations of current or 

possible states, as suggested by prominent influential models of hippocampus (e.g. O’Keefe and 

Nadel, 1978, Stachenfeld et al., 2017). Thus, our study addressed a fundamental gap in the 

literature. 

 

Another key variable is context. Studies of abstract state space representation by the 

hippocampus have investigated mapping of passively- or incidentally- learned relationships 

between stimuli, and to our knowledge, no prior studies have investigated whether such 

representations are context-dependent. We know, however, that hippocampal place cells show a 

high degree of context-specificity, such that it constructs different maps for different contexts. If 

hippocampal maps of abstract spaces are context-specific, that would place fundamental limits 

on current models, that do not explain learning and representations of contexts. 

 

Here, we investigated planning and goal-directed navigation in two different state-space 

contexts—each involving the same stimuli, but with different relationships between the stimuli. 

As shown in the paper, our findings diverge considerably from current “predictive map” models 

which suggest that the hippocampus learns distributions of probable future states.  

 

We have thoroughly rewritten the introduction so that the gap in knowledge that our study 

addressed is more apparent to the reader. In addition, to clarify the novelty and significance of 

our results, we have added the following sections to the results section to more accurately depict 

current theories on the role of the hippocampus during planning and navigation.  

We hope that this will address Reviewer 1’s concerns.  

 

Added to Introduction Pg. 3 – 5: 

“ Several lines of evidence suggest that the hippocampus plays a key role in navigation, though 

its role in navigation is fundamentally unclear. For example, based on findings showing that 

hippocampal “place cells” encode specific locations within a spatial context, many have argued 

that the hippocampus forms a cognitive map of physical space (O’Keefe and Dotrovsky, 1971; 

O’Keefe and Nadel, 1978). It is now clear that the hippocampus also tracks distances in abstract 

state spaces (Tavares et al., 2015; Park et al., 2019; Aronov et al., 2017), potentially supporting 



 

the broader idea that the hippocampus encodes a “memory space” (Eichenbaum & Cohen, 2014) 

that maps the systematic relationships between any behaviorally relevant variables (Behrens et al 

2018, Stachenfeld et al., 2017, Kaplan, Schuck, & Doeller 2017; but see O’Reilly et al. 2022 and 

Summerfield et al., 2020 for alternative views).  

 Building on this idea, some have proposed that the hippocampus encodes a “predictive 

map” that specifies not only one’s current location, but also states or locations that could be 

encountered in the future (e.g. Mehta et al., 2001, Stachenfeld et al., 2017). For example, the 

“successor representation,” a popular computational implementation of the predictive map model 

(e.g. Gershman, 2018), has been used to argue that the hippocampus represents each state in 

terms of its possible transitions to future states. This model demonstrates that through an 

incremental learning process about state-to-state transitions, analogous to model-free learning 

about rewards, enables organisms to rapidly learn how a sequence of actions can lead to a 

desired outcome.  

Although numerous studies have investigated representations of abstract state spaces in 

the hippocampus, two fundamental questions remain unanswered. One key issue concerns the 

role of context. Single-unit recording studies have reported that the spatial selectivity of place 

cells is context-specific—that is, the spatial selectivity of a given cell in one environment varies 

when an animal is moved to a different, but topographically similar environment (O’Keefe and 

Dostrovsky, 1971, Skaggs and McNaughton, 1998; Leutgeb et al., 2004, Alme et al., 2014, 

McKenzie et al., 2014). Just as one might pull up different cognitive maps for different physical 

contexts, it is reasonable to think that we might utilize context-specific maps of abstract state 

spaces. Computational models have been proposed to explain how the hippocampus might 

recognize contexts (Honi et al., 2020, Whittington et al., 2020, George et al., 2021), but there is 

little empirical evidence showing whether or how context is utilized in abstract spaces. 

A second key issue that has not been addressed, concerns how goals affect hippocampal 

representations of abstract task states. Theories of state space representation by the hippocampus 

rely heavily on results from studies that examined activity in hippocampal place cells during 

random movements through an environment (e.g. Alme et al., 2014). Accordingly, studies of 

abstract spaces in humans typically investigate incidental learning of stimulus dimensions or 

arbitrary state dynamics (Garvert et al., 2017, Schapiro et al 2016, Schuck & Niv, 2016). These 

kinds of passive, incidental learning tasks differ from those used by Tolman (1948) to 

demonstrate that animals actively use a spatial representation to guide navigation to particular 

goal locations in an environment. If the human hippocampus forms an abstract cognitive or 

predictive map, one would expect to see such a representation during planning and navigation 

towards different goals in the same context.  

Based on what is known from studies of spatial navigation, there is reason to think that 

hippocampal representations in the context of goal-directed navigation might fundamentally 

differ from what is seen during random or incidental behavior. For example, hippocampal place 

cells have differential firing fields during planning depending on the future goal of the animal 

(Ainge et al., 2007; Wood et al., 2000; Ferbinteanu and Shapiro, 2003, Ito et al., 2015), and goal 

locations tend to be overrepresented (Dupret et al., 2010, Gauthier et al., 2018). Consistent with 

these findings fMRI studies of spatial navigation have found that hippocampal activity is 

modulated by a participant’s distance from a goal location (Patai et al., 2019, Howard et al., 

2014), and that hippocampal activity patterns during route planning carry information about 

prospective goal locations in a virtual space (Brown et al., 2016). These findings suggest that 

hippocampal representations during planning or navigation in abstract state spaces might be 



 

powerfully shaped by goals. If this is indeed the case, it would potentially challenge models 

proposing that the hippocampus encodes a relatively static map of current (O’Keefe and 

Dotrovsky, 1971) or possible future states (Stachenfeld et al., 2017).” 

 

Added to Representation of Behaviorally Relevant Sequence Positions During Navigation Pg. 14 

-17: 

“Having established that the hippocampus represents information about context-specific 

goals during planning, our next analyses turned to how state-action information is dynamically 

represented during navigation. Available evidence suggests at least three ways that 

navigationally-relevant information might be represented by the hippocampus. Based on classic 

studies of place cells, we might expect the hippocampus to represent the current state as 

participants navigated toward the goal. Alternatively, based on predictive map models 

(Stachenfeld et al., 2017), we could expect that the hippocampus would represent not only the 

current state but also future states.  

A third possibility is that the hippocampus might preferentially represent goal-relevant 

information during navigation. In our study, the most behaviorally significant points in a 

navigated sequence were the starting point (position 1), when a goal-directed plan must be 

initiated, and the center of the maze (position 3), a critical sub-goal where one’s decision will 

determine the ultimate trial outcome. This was confirmed by our behavioral analyses that 

revealed that participants were slower to respond at positions 1 and 3 (Fig. 1). We therefore 

reasoned that participants might be likely to prospectively retrieve hippocampal representations 

of these states during navigation. 

To test this prediction, we examined pattern similarity differences during navigation across 

converging and diverging sequences in the same zoo context. Converging and diverging 

sequences were chosen because these sequences have an equal number of overlapping states, but 

the timing of the overlap is systematically different. Both the “current state” and standard 

“predictive map” models would suggest that pattern similarity during navigation should reflect 

this pure overlap--early in a sequence there should be higher pattern similarity across pairs of 

diverging sequence trials, and late in a sequence there should be higher pattern similarity across 

pairs of converging sequence trials. In contrast, a goal-based account would predict that pattern 

similarity could reflect prospective coding of goal-relevant information (e.g. He., et al 2022, 

Brown et al., 2016) which should be higher across converging sequences (which share the same 

upcoming goal), relative to diverging sequences (which overlap in early states but lead to 

different goals).  

We used a time-point by time-point pattern similarity analysis approach that enabled us 

to examine information in multivoxel activity patterns about current, past, and future states to 

test our key hypotheses. This technique is conceptually similar to cross-temporal generalization 

techniques used in pattern classification analyses (King & Dehaene, 2014). First, we extracted 

the time-series for each navigation sequence using a variant of single trial modeling that utilizes 

finite impulse response (FIR) functions (Turner et al., 2012), allowing us to examine activity 

patterns for each time point (TR) as participants navigated through the sequence of items. 

Importantly, incorrect trials were excluded from this analysis. As depicted in Figure 3, we 

quantified pattern similarity between pairs of navigation sequences (e.g. zebra to tiger sequence 

compared to camel to tiger sequence) at different timepoints (e.g., TR 1 to TR 10), which yielded 

a timepoint-by-timepoint similarity matrix for each condition (converging or diverging 

sequences). The diagonal elements for this matrix reflect similarity between pairs of animal 



 

items from the same timepoint in the sequence. Off-diagonal elements reflect the similarity 

between an animal at one timepoint in the sequence and animal items at other timepoints in the 

sequence.  

Separate timepoint-by-timepoint correlation matrices (Pearson’s r) were created for pairs 

of converging sequence trials and pairs of diverging sequence trials. We next computed a 

difference matrix and tested for statistically significant differences between converging and 

diverging sequences, correcting for multiple comparisons using cluster-based permutation tests 

(10,000 permutations, see Methods for more details). 

As noted above, diverging sequences have overlapping states early in the sequence, and 

converging sequences have overlapping states late in the sequence. If the hippocampus 

represents only current states, we would expect to see pattern similarity differences between 

converging and diverging close to the diagonal of the timepoint-by-timepoint matrices — that is, 

we would expect higher pattern similarity for diverging pairs during timepoints early in the 

sequence and higher pattern similarity for converging pairs during timepoints late in the 

sequence. If the hippocampus represents current and temporally-contiguous states, as suggested 

by predictive map models, we would expect that at early positions, we would expect higher 

pattern similarity for diverging sequences, both on- and off –diagonal, and at late positions, we 

would expect higher pattern similarity for converging sequences both on- and off –diagonal. 

Finally, if the hippocampus preferentially represents goal-relevant information during navigation 

(Mattar et al., 2018, He et al., 2022), we would expect to see higher off-diagonal pattern 

similarity only for converging sequences, because only converging sequences share the same 

goal. Specifically, we expected higher off-diagonal pattern similarity between goal states and 

earlier positions in the sequences.” 

 

In addition, goal context is not explicitly cued on a per trial basis. Instead, the context is cued in 

a blocked fashion such that at the beginning of a scanning run a specific zoo context is cued. 

Then, the following 8 navigation trials for one context are performed before receiving a cue for 

another context where the next 8 navigation trials are performed.  

 

It is not clear why the use of explicit cues may be seen as problematic, as nearly all studies of 

goal-directed navigation in rodents and humans use some form of explicit cuing or instruction. 

Our task is designed in such a way that if participants are not cued with a specific goal for a 

given trial, then participants would not be able to form a plan during the cue period or be able to 

navigate to their goal. These behaviors are central to our empirical questions. How the 

hippocampus functions to retrieve the correct context-specific memory, in the face of many 

highly overlapping paths, is not known. As we now clarify in the introduction of the paper (Pg. 

4), a number of tasks have investigated passive or incidental learning of task state relationships, 

and these tasks are very different from the kind of goal-directed navigation tasks used by 

Tolman, and in subsequent studies of hippocampal function by Wood and Eichenbaum, Shapiro, 

and others.  

 

It is conceivable that the use of visual cues could introduce some effect of visual similarity that 

could influence pattern similarity results. To demonstrate that visual similarity did not impact our 

results, we looked specifically at differences between Converging and Diverging sequences in 

relation to the Same Sequence. If the hippocampus only cared about the amount of visual overlap 

(e.g. sharing start or sharing goal), we should see no difference between Converging and 



 

Diverging cues. We have conducted several other control analyses outlined in the results and 

supplement (Figure S2) that specifically rule out the role of visual or motor confounds in the 

effects observed in the hippocampus.  

 

It might be useful to note that we were surprised at the results. In our revised manuscript, we 

have emphasized how our results deviate from current theories of hippocampal state-space 

representation. A simple episodic memory (Davachi, 2006) or episodic simulation (Schacter et 

al., 2007) hypothesis would have predicted that pattern similarity should simply reflect the 

overlap in states on a route, such that pattern similarity should be highest for identical route 

trials, intermediate for same start or same goal trials, and lowest for different start/different goal 

trials. As we have detailed in our simulations using the successor representation, our results were 

also unexpected based on what might be predicted from the “predictive map” hypothesis. As we 

now clarify in the discussion section, we think that the best way to explain the present results is 

that, in the context of goal-directed behavior, hippocampal memory functions might be 

strategically deployed to emphasize decision-relevant states, as opposed to mapping all 

relationships, in order to help construct a model-based plan. 

 

Reviewer 1’s concerns also alerted us to the fact that our use of the term “no overlap” was 

misleading. In fact, in our study, every route involved overlap, as the third state was identical in 

all routes. This is analogous to studies of spatial navigation with “plus maze” topologies, in 

which an animal must return to the center of the maze on every journey. It is also important to 

note that trial pairs that were originally labeled as “no overlap” included pairs of trials with 

identical stimuli but in reversed order. For example, this could include cues from the zebra to 

tiger sequence and the tiger to zebra sequence (same exact stimuli but in a reverse order and 

mirrored moves). Thus, the condition labeled as “no overlap” included trials with a number of 

overlapping states. To rectify this issue, we have relabeled the no overlap condition to "Different 

Start/Different Goal” to better reflect this. We also highlight this point in the paper in the results 

and methods sections, as well as any figures where we illustrate the trial types that are included 

in each of our conditions. 

 

Finally, it is important to emphasize that the robustness of the results is especially evident when 

considering results across contexts. Looking across contexts, converging sequences are 

significantly different from diff. start/diff. goal. Interestingly, the directionality here is that 

converging sequences show significantly higher similarity than diff. start/diff. goal across 

contexts while diverging sequences have lower pattern similarity than diff. start/diff. goal, 

though not significant. (converging > diff. start/diff. goal across context: z = 2.08, p = 0.038; 

diverging > diff. start/diff. goal across context: z = 1.02, p = 0.31). Taken together, we interpret 

these results to suggest that both goal and context are highly relevant for activity patterns in the 

hippocampus during planning. Importantly, when looking across sequences that share a goal, 

context has a differential effect on sequential plans, as indicated by a significant interaction 

between goal and context. 

 

2) The authors also conduct timepoint-by-timepoint analyses in which they test for evidence 

of prospective representation of future states, and find evidence of greater pattern 

similarity between the first and third time point for converging relative to diverging 

sequences. They interpret the results from these analyses as suggesting that for 



 

converging sequences, at State 1, participants represent State 3 (the center of the ‘maze’ 

in which they must make a turn toward the final goal). However, it is unclear why this 

relation should be stronger for converging vs. diverging sequences, since both groups of 

sequences share State 3. One control analysis that might strengthen this interpretation 

would be if the authors compared State 1 pattern similarity for all sequences that share 

the same State 3 and all those that do not. If pattern similarity at State 1 is higher for 

sequences that share the same State 3, this would strengthen the interpretation that the 

hippocampus represents the relevant subgoal at the first state. 

 

In sum, I’m not sure that the findings presented in this paper afford a greater 

understanding of the role of the hippocampus in planning or navigation.  

 

Below are a few suggestions for additional analyses or revisions: 

 

Response #2 

 

We appreciate this reviewer's thoughtful comment and we will attempt to clarify the theoretical 

logic behind this conclusion. Prospectively activating a sequence of steps requires you to activate 

memory representations associated with your upcoming plan. We use representational similarity 

to compare repetitions of different sequences that have different starting states but the same 

endpoint. We compare this similarity to sequences that have the same starting point but have 

different endpoints.  

 

We acknowledge this reviewer’s criticism here that both sequences share P3 and it is not clear 

why there should be any difference between converging and diverging sequences. Our 

perspective is that at P1 both converging and diverging sequences should be activating P3. 

However, based on our results we hypothesize that activity patterns evoked by P3 do not only 

contain P3 information. Rather, they also include pattern information related to their ultimate 

goal (P5) and also possibly other sensorimotor information important for realizing that goal. We 

think that this makes sense if one assumes that the hippocampus is not representing the item at 

P3, but rather it is representing the information that is relevant to reaching the goal. Note that 

P3 is the key point of uncertainty in the task, and at this position, the agent’s decision should 

dictated by the goal. For converging sequences P1-P3 similarity is driven by the fact that subjects 

are using the same goal to guide planning on the move at P3. In diverging sequences P1-P3 

similarity is still driven by those same factors, but subjects’ plans are dictated by different goals, 

and thus result in lower pattern similarity. 

 

Lastly, we have attempted to clarify the predictions and importance of this result by more clearly 

laying out possible predictions in the manuscript. We have also clarified our interpretation by 

adding the following sentences to the discussion section. An important point to emphasize is that 

all sequences share State 3 (P3) and thus we cannot complete this control analysis as described in 

comment #2. We hope that our explanations to the reviewer and additional clarifications added 

to the manuscript address Reviewer #1’s concerns. 

 

The hippocampus represents context-specific goal information during planning Pg: 22 



 

“In contrast, in our experiment, all trials that converged on the same goal required the same key 

decision at position 3, regardless of the starting point. In this situation, it is optimal to learn a 

representation that captures the information that is common to any sequence that converges on 

the same goal. For example, as depicted in Figure 1, any trial with a tiger as the goal animal will 

require participants to choose the “down” button at position 3. In the next section, we explain 

why results from the navigation period are also consistent with this interpretation.” 

 

Reinstatement of remote timepoints in the hippocampus during navigation Pg. 23-24: 

 

“As noted above, the animals in the first three positions overlapped across diverging sequences, 

whereas the animals in the last three positions overlapped across converging sequences. Thus, if 

the hippocampus only represented the current state during navigation, we would have expected 

pattern similarity on the diagonal in Figure 4 to be higher for diverging trials for early time 

points, and then higher for converging trials in the later time points (see also Figure S4). Instead, 

we found that the significant differences between converging and diverging trial pairs were 

primarily off of the diagonal, suggesting that, during the navigation phase, hippocampal patterns 

carried information about behaviorally relevant remote timepoints along the route. More 

specifically, hippocampal activity patterns early in the navigation phase carried information 

about position 3 in converging trials, as compared to diverging trials. 

This pattern of results is notable because the stimulus at position 3 is exactly the same for 

all trials in all contexts, so these results could not solely reflect prospective retrieval of future 

stimuli. As noted above, the correct decision to be made at position 3 depends on one’s current 

goal and context. All converging sequences, which share the same goal, require the same 

decision at P3, whereas diverging sequences are associated with different decisions at P3 because 

they involve different goals. These results are consistent with the idea that rather than carrying 

information about sequences of upcoming states, participants were prospectively activating the 

most goal-relevant information in the upcoming sequence, namely the context- and goal-

appropriate decision at position 3.” 
 

 

3) Given the strong effects of context in the first set of hippocampal pattern similarity 

analyses, it seems as though the authors should also break down their time-point analyses 

by context. If the hippocampus is indeed carrying contextual information, then the 

expected differences in converging vs. diverging sequences may be obscured by this 

added ‘noise.’ 

 

Response #3 

 

We appreciate the reviewer’s comment and apologize if this point was not clear in our original 

manuscript. All time-point by time-point analyses were conducted on trials within the same 

context. We have attempted to clarify this point in our manuscript by adding the following 

sentences to our results section to be more explicit.  

 

Representation of behaviorally relevant sequence positions during navigation - Pg, 15: 

“To test this prediction, we examined pattern similarity differences during navigation across 

converging and diverging sequences in the same zoo context. Converging and diverging 



 

sequences were chosen because these sequences have an equal number of overlapping states, but 

the timing of the overlap is systematically different.” 

 

To further address this comment, we have also included additional analyses contrasting 

converging and diverging sequences in different contexts as well as testing for an interaction 

across contexts (Converging – Diverging Same Context > Converging – Diverging Different 

Context). This analysis was conducted by using the same analysis procedure as our other TR by 

TR analyses (See Figure 3, 4 and Methods). We have included below two additional 

visualizations of this result (Reviewer 1 Figure 1 and Figure 2).  

 

Reviewer 1 Figure 1: Converging > Diverging Sequences in Different Contexts 
A) - Group level pattern similarity results from converging sequences in different context during active navigation. B) - Same 

as A) but showing diverging sequences in different contexts.  C) - TR by TR pattern similarity results depicting a statistical 

map of converging – diverging. Z values were calculated using a bootstrap shuffling procedure with 10,000 permutations. D) 

– Thresholded statistical map at p < 0.025. Cluster based permutation tests with 10,000 permutations (Maris and Oostenveld, 

2007) were performed with a cluster defining threshold of p < 0.025 and a cluster alpha of 0.05. Note that no clusters survive 

multiple comparisons correction. 

                       

             

  

  

  

  

  

    

     

    

     

    

     

    

     

           

             

  

  

  

  

  

   
  

    

  

    

 

   

 

   

 

             

             

  

  

  

  

  

       

  

    

  

    

 

   

 

   

 

          

             

 
 
   

  
  
  

       
   

 
 
 
   

  
  
  

       

    

                  

 
 
   

  
  
  

       
   

 

 
 
   

  
  
  

       

           

            

    



 

As can be seen above in Reviewer 1 Figure 1 there is no clear evidence of significant off 

diagonal activation for Converging vs. Diverging sequences across contexts. Given our 

interpretation of our results, this suggests that in converging sequences within the same context, 

people are activating upcoming representations of a critical decision point that is context 

specific. This is because across context subjects are activating different context specific plans 

and thus similarity across contexts should be low. 

 

  

Reviewer 1 Figure 2: (Converging > Diverging Sequences Same Context) >  Converging > Diverging 

Sequences Different Context  
A) - Group level pattern similarity results from converging sequences > diverging sequences in the same context during active 

navigation. B) - Same as A) but showing diverging sequences.  C) -  TR by TR pattern similarity results depicting a statistical 

map of the interaction effect.  Z values were calculated using a bootstrap shuffling procedure with 10,000 permutations. D) –

Thresholded statistical map at p < 0.025. Cluster based permutation tests with 10,000 permutations (Maris and Oostenveld, 

2007) were performed with a cluster defining threshold of p < 0.025 and a cluster alpha of 0.05. Note that no clusters survive 

multiple comparisons. Outlined in Red is the cluster extent of the cluster identified in Converging > Diverging Same Context. 

                                    

             

  

  

  

  

  

        

      

     

      

     

      

 

     

    

     

                                       

             

  

  

  

  

  

        

      

     

      

     

      

 

     

    

     

    

             

             

  

  

  

  

  

       

  

    

 

   

 

   

 

   

           

             

  

  

  

  

  

    

   

 

   

 

   

 

             

          

            

             

          

             

 
 
   

  
  
  

       
   

 

 
 
   

  
  
  

       
   

 
 
 
   

  
  
  

       

 
 
   

  
  
  

       

                  

    

    



 

 

We also tested conducted our TR by TR analyses on the interaction effect of converging and 

diverging sequences across contexts. As can be seen in Reviewer 1 Figure 2 no clusters survive 

multiple comparisons correction but interestingly, we still see higher pattern similarity around 

time points that would be associated with activating position 3 while at position 1. In addition, 

we also have highlighted the cluster extent of the Converging > Diverging Same Context to 

illustrate graphically that the effects observed occur in approximately the same remote 

timepoints.  

  

Taken together we feel that these two data points illustrate the specificity of our effect to the 

same context and demonstrate visually that timepoints clustered around position 3 show the 

biggest effects when comparing across contexts. We hope that these address Reviewer 1’s 

concerns with the robustness of our TR by TR similarity effects.  

 

4) The introduction section was not particularly focused. It read more like a review paper 

than an exposition of the background and motivation for a specific empirical research 

question. 

 

Response #4 

 

We appreciate Reviewer 1’s constructive feedback on ways we can improve the focus of the 

introduction. We have reworked the introduction of the paper to be more focused on the specific 

empirical questions addressed in the paper and the gaps in the literature that our study fills. 

Mainly, we have removed text from the intro that is not directly related to hippocampal activity 

in planning, navigation, and memory. The introduction now has a clear flow from Hippocampus 

-> Cognitive and Predictive Maps -> Context and Goals -> Our Experiment. Given the 

intersectional nature of the research conducted here, we also felt it was necessary to have a broad 

introduction spanning several different bodies of literature to accurately motivate the importance 

and novelty of our study. We think that this has improved the manuscript overall and hope that 

this will address Reviewer 1’s concerns.  

 

5) The introduction of the successor representation predictions and analyses in the 

discussion feels somewhat out of place. 

 

Response #5 

 

We appreciate this reviewer pointing out areas for us to improve the focus of our manuscript. As 

mentioned in Response #1 and Response #2 above, we have extensively reworked both the 

introduction and results section to help make the motivations for our successor representation 

analyses clearer. To be explicit the successor representation theory is now described broadly in 

our paper as the “Predictive Map Hypothesis”. In the Discussion, we have added a subheading: 

“Relevance to models of hippocampal state space representation.” Under this subheading, we 

provide context for our simulations using the successor representation, and consider alternative 

models that might more accurately capture the present results. Lastly, the primary purpose of the 

Successor Representation simulations was to formalize predictions from a standard predictive 

map model and to illustrate that our hippocampal results cannot be explained solely by 



 

accounting for shared transition probabilities (which would predict higher similarity for 

Diverging Sequences). 

 

Added to Discussion Pg. 25-26 

 

Relevance to models of hippocampal state space representation 

Several models of hippocampal contributions to spatial navigation and abstract state 

spaces propose that the hippocampus generates predictions of upcoming states. For instance, a 

specific computational implementation of a predictive map model, the successor representation, 

states that the hippocampus is involved in learning relationships between states and actions, and 

that its representations reflect expectations about future locations (Stachenfeld et al., 2017; 

Momennejad, 2020). We used a standard version of this computational model to generate 

simulated pattern similarity results, and surprisingly, these simulated matrices were qualitatively 

different from what we observed in the hippocampus. 

In our simulations (see Supplemental Materials), a classical version of the successor 

representation reflected the transition probabilities between states, such that adjacent states were 

more similar than non-adjacent states. This is because, participants transitioned between all start 

and end positions equally in both directions. Thus, the model could not reproduce the difference 

between converging and diverging sequences either during the planning or navigation phases. It 

is possible that in the relatively small and deterministic state space used in our task, it is not 

advantageous to represent an elaborate transition structure. In larger decision spaces, our data 

would suggest that during navigation the hippocampus would be involved in activating memories 

for key decision points towards a goal. An alternative approach to account for the present results 

would be to use a model that places heavier emphasis on context instead of only the next item or 

next decision. One model, the “clone-structured cognitive graph” model (George et al., 2021), is 

able to learn “clones” of similar observations that are distinguished by the current context. We 

predict that that models that take into account context and goals, like the model presented in 

George et al., will be better able to capture the nuances of our task.  

Alternatively, it might be advantageous to focus on models that incorporates an inductive 

bias to specifically focus on the most goal-relevant aspects of a state space (e.g., the goal, 

context, and decision at P3). In this case, we would expect that a single algorithm such as the SR 

could account for all kinds of state space representations in the hippocampus. Instead, 

hippocampal representations of physical space (Ekstrom and Ranganath, 2017) and abstract state 

spaces (Boorman, Sweigert, & Park, 2021) are likely to be more flexible, reflecting the 

computational demands of the planning problem, the subject's experience with the problem, and 

the situation. In the present study, the task might have encouraged a model-based planning 

strategy, in which future goals and key states are strategically retrieved and represented in 

hippocampus. In other tasks, where the structure is well learned and people need to re-plan, 

hippocampal state spaces might resemble successor-based maps. 

 

Minor points: 

 

6) Were trials in which participants made navigation mistakes excluded from neural 

analyses? 

 

Response #6 



 

 

We thank this reviewer for mentioning this point and we have included the following text in the 

manuscript to address this concern and clarify which trials were included or excluded from 

different analyses.  

  

Results Cue Period Pg. 8-9:  

“In addition, only trials which resulted in subjects subsequently making the correct moves 

towards the goal were included in neural analyses.” 

 

Results Nav Period Pg. 16:  

“Importantly, incorrect trials were excluded from this analysis”  

 

7) The authors note they used likelihood ratio tests to examine the significance of the fixed 

effects within their mixed-effects models, which only included random subject intercepts. 

This combination of intercept-only models and likelihood ratio tests is the least 

conservative way to test the significance of fixed effects (highest Type I error rates). 

Though the authors note the maximal models did not converge, they could further try: 

- First removing the correlations between random slopes and intercepts 

- Removing interaction terms in the random effects 

- Removing just the random slope for the fixed effect that explains the least variance 

- Using different optimizers 

 

In addition, the authors could test the significance of their fixed effects via F tests. 

 

Response #7 

 

We appreciate the helpful comments for how to properly control for type 1 error rates using 

mixed effects models. As described in the methods under the linear mixed effects model section, 

we followed the procedure that is described in Matuschek, 2017. This procedure first involves 

fitting the maximal model as described in Bates et al., 2013. This resulted in the model failing to 

converge or producing a singular model fit (which indicated overfitting). We then removed the 

correlation between random slopes and intercepts and refit the model. Then we removed the 

interaction terms in the random effects and refit the model, checking for convergence. Lastly, we 

removed the random slopes for fixed effects that explained the least variance (items). This 

procedure was followed for all mixed effect models used in the paper and resulted in the final 

model reported in the methods section of the paper (all resulted with only random intercepts for 

subjects). 

 

We did not try different optimizers, but feel as though we have been sufficiently rigorous in 

following the established guidelines for using and reporting results obtained from mixed effects 

models. 

 

In our revised manuscript, we demonstrate the robustness of our effects by showing that the 

selection of statistical tests does not impact our main experimental findings. Per the reviewers’ 

suggestions, we have provided tables for the two main models used within bilateral hippocampus 

with both likelihood ratio tests and F-tests. As can be seen below, the Sequence by Context 



 

interaction and Overlap by Context analyses are statistically significant regardless of the type of 

statistical test used. In summary these analyses increase our confidence in the robustness of our 

results. This table has been added to the supplemental materials. 

 

Table 1 Sequence By Context Likelihood Ratio 
Table  

DF full model: 6    

Effect DF Chi Sq. P Val. 

Sequence 1 3.57 0.059 

Context  1 3.36 0.067 

Sequence * Context 1 4.26 0.039 
 

Table 2 Sequence By Context F-Tests Table  
Effect DF F P Val. 

Sequence 1,66 3.5 0.066 

Context  1,66 3.3 0.074 

Sequence * Context 1,66 4.2 0.044 
 

Table 3 Overlap Analysis Likelihood Ratio Table  
DF full model: 10    

Effect  DF Chi Sq P Val. 

Context 1 2.03 0.15 

Overlap 3 4.85 0.18 

Context * Overlap 3 14.75 0.002 
 

Table 4 Overlap Analysis F-Tests Table  
Effect DF F P Val. 

Context 1,154 1.95 0.16 

Overlap 3,154 1.57 0.2 

Context * Overlap 3,154 4.93 0.003 
 

 

We have added to the results section a note to the reader guiding them to the methods where they 

can find detailed information about model selection for linear mixed effects models. Detailed 

discussions of the model selection approach are too verbose for the main body of the paper, but 

we point this reviewer to the methods section where we clearly outline the procedure followed in 

Matuschek, 2017.  

 
Methods - Linear Mixed Model Section, Pg. 35: 

‘In all the above models, a model with a maximal random effects structure, as recommended by 

Barr et al., 2014, was first fit. In all cases the maximal model failed to converge or was singular 

indicating over-fitting of the data. When examining the random effects structure for these 



 

models, random slopes for our fixed effects accounted for very little variance when compared to 

our random intercept for subject. To improve our sensitivity and avoid over-fitting these terms 

were removed as suggested by Matuschek et al., 2017. Lastly, it is important to note that our 

results are not dependent on using linear mixed models. Using a standard repeated measures 

ANOVA produces qualitatively and quantitatively similar results in all ROIs.” 

Reviewer #2 (Remarks to the Author): 

 

The Authors present a very nicely written manuscript investigating the involvement of the 

hippocampus during sequence navigation. They find that both planning and active movement 

through decision space modulate hippocampal activity in a context-dependent way, and show 

evidence that supports an alternative explanation of hippocampal coding to current goal states 

and those predicted by the successor representation. They find the hippocampal activity is highly 

context and goal dependent, and they support this with some very elegant control analysis. I 

found the study and analyses to be sound, but I would like to request some clarification on some 

of the results. 

 

The comments are in chronological order (as manuscript was read): 

 

We appreciate the reviewer’s enthusiasm about our manuscript. We also thank the reviewer for 

their careful read of our manuscript and for their helpful suggestions. We have addressed the 

reviewer’s comments below and we have incorporated these changes into our manuscript, as we 

indicate below. 

 

The comments are in chronological order (as manuscript was read): 

 

1) In the text it says: p3 > p4, z = 2.536, p = 0.0112, but Figure 1 shows p=0.055 for that 

comparison, please indicate which it is. 

 

Response #1 

 

We appreciate the reviewer catching this typographic error. The statistics reported in the text are 

correct, and this is a mistake in the figure. To be clear for the p3 vs p4 comparison: “p3 > p4, z = 

2.536, p = 0.0112”. We have updated the figure to correctly reflect the statistics reported in the 

paper. 

 

2) The caption of Figure 2D says 'same context', is it meant to be 'different'? Relatedly, in 

the text (page 10 bottom) it seems that only the stats for panel C (within context) are 

reported. I was wondering what it means that between contexts, there is a significant 

effect of same sequence and converging sequences - I assume this means that the 

hippocampus is representing future goal states, but it is also context modulated 

(significant interaction). Are the values in the between context analysis significantly 

different from those in the within context analysis? Where could this context signal come 

from - is it possible to look at prefrontal areas to establish whether there is a context 

signal there driving the hippocampus? (especially as the task was blocked for context) 

 



 

 

Response #2 

 

We thank Reviewer 2 for these thoughtful observations. Figure 2D is attempting to illustrate the 

directionality of the context by overlap interaction. Values greater than 0 in this plot indicate that 

pattern similarity for a given condition is higher for the within context comparison. Values below 

0 indicate higher similarity for a given condition for a between context comparisons. Both Same 

and Converging sequences show significantly higher pattern similarity when in the same context 

(same: z = 2.60, p = 0.0094; converging: z = 2.51, p = 0.012). This is in contrast to diverging 

sequences which show a trending pattern in the opposite direction (z = -1.89 , p = 0.060); higher 

pattern similarity for sequences that come from different contexts. Related to this point, we 

appreciate the suggestion to compare the pattern similarity values from figure 2C and 2D. 

However, Figure 2D is already doing exactly this. Put another way, we are already comparing 

the sequence representation for each of the conditions in Figure 2C across contexts in Figure 2D.  

 

We have added the following text to the results section to properly report the statistical 

comparisons conducted in this plot. We also added a guide to the axis for figure 2D to indicate 

what values greater than and less than zero signify.  

 

Added to results section page 12:  

 

“Between contexts, cues of the same sequence and converging sequences showed significantly 

higher pattern similarity when in the same context (Same Sequence: z = 2.60, p = 0.0094; 

Converging: z = 2.51, p = 0.012). In contrast, diverging sequences showed a different pattern of 

results such that sequences from different contexts had higher similarity (z = 1.89, p = 0.060). 

Lastly, sequences with different starting states and goals were not significantly modulated by 

context (z = 0.430, p = 0.67).” 

 

Our interpretation of this result is that across contexts, specifically when you are activating a 

similar plan, the hippocampus represents these events in a similar way if they are in the same 

context. This is a standard context dependent memory effect that has been reported in the 

Hippocampus and MTL many times before. What is novel here is that even different sequences 

(Converging) that share the same goal show a surprising effect when considering standard 

models of the hippocampus’ role in memory. See Reviewer 1 Response #1 and #2 for a longer 

discussion of why this result is novel and the empirical motivations for our study. 

 

Lastly, regarding the role of prefrontal areas in our task, it is highly likely that the regions in the 

PFC are contributing to the pattern of results observed in the hippocampus. Unfortunately, when 

we examined different sub regions of the PFC (mainly vmPFC) we did not observe significant 

effects for any of our primary analyses. Specifically, when conducting our primary overlap by 

context analysis on a vmPFC ROI obtained from the Desitrieux atlas in Freesurfer (Fischl et al., 

2004, Desitrieux et al., 2010). We find no significant effects of context or overlap during 

planning see table and figure below. It would be worthwhile to further investigate the role of the 

PFC in future studies looking at how goal information impacts hippocampal representations.  

 

 



 

 

 

 

 

Table 5 Overlap By Context Likelihood Ratio Table  
DF full model: 10    

Effect DF Chi Sq. P Val. 

Context  1 0.05 0.82 

Overlap 3 6.5 0.09 

Context * Overlap 3 0.54 0.91 
 

 
 

 

3) In caption S2: 'χ 2 (2, N = 23) = 40.40, p < 0.0001' is repeated and the word 'interaction' 

is in the wrong place? (before p value). I really like these control analyses. 

 

Response #3 

 

We thank this reviewer for pointing this typographic error out and have updated the manuscript 

supplement accordingly.  

 

4) I find this section (page 16) a little confusing, because it reads as if the predictions would 

be early similarity for both convergent and divergent sequences (and the divergent show 

no such effect anyway). Also, was the statistical map also looked for the opposite 

subtraction, ie. D-C?) "In this case, we would expect to see higher off-diagonal pattern 

similarity in converging sequences, such that across converging sequences, activity 

patterns associated with goal states would be correlated with activity patterns during 

earlier positions in the sequences. This effect should be higher for converging sequences 

than for diverging sequences because activations of state-action pairs should become 

more similar later in the sequence. Conversely, diverging sequence state-action pairs 

should be more similar earlier in the sequence but then decrease as the sequence 

progresses." 

 



 

Response #4 

 

This section, pages 14-16, are meant to lay out possible outcomes for how this analysis may have 

turned out, which is supported by past literature on the topic. To clarify, we had three hypotheses 

for differences in pattern similarity in converging and diverging sequences: (1) The hippocampus 

represents the current state (2) The hippocampus represents the past and future state in addition 

to the current state (3) The hippocampus preferentially represents goal information during 

navigation. 

 

We have re-worked this section (pages 14-16) so that it more clearly lays out our predictions and 

the possible outcomes of this analysis. See Reviewer 1 Response #1 above for the full text 

addition.  

 

We appreciate the reviewer’s interest in understanding the directionality of the time-point by 

time-point effect. We used cluster-based permutation tests (Maris & Oostenveld, 2007) using a 

two-sided t-test with a cluster defining threshold of 0.05. This means that to initially define 

clusters to be included in our permutation test, we examined both positive and negative clusters. 

Put another way, we examined both the Converging - Diverging and the Diverging - Converging 

statistical maps. To add additional clarification, during the permutation test step, separate monte 

carlo simulations were conducted for both positive and negative clusters to determine their 

significance at a threshold of p < 0.05. These values are standard in the literature and is what is 

suggested on the Fieldtrip website.  

 

5) Relatedly, both from the timing of the clusters and the timecourse in Figure 4, it seems 

that it was actually position 4, rather than 5, that was reactivated, if at all (given this 

didn't survive MCC). However, I assume that after the decision point (P3), there was no 

need to necessarily plan ahead, as from then onwards, the same button presses need to be 

made. So to me, given this design, it makes sense that P3 is the most important (sub)goal, 

although I would then expect it in both convergent and divergent routes (if anything more 

in the latter, where different plans must be made at P3). In light of this, I do not think this 

statement in the Discussion is accurate: 'Similarly, during navigation, we found that the 

hippocampus prospectively activated information about upcoming states and that this 

effect was strongest in relation to key decision points and goals.' As goals were not 

significantly activated (p1 to p5 or p3 to p5). 

 

Response #5 

 

We thank Reviewer 2 for this question about which specific timepoints are being activated. First, 

we agree with the reviewer’s point that it is not appropriate to make strong claims about results 

in the timecourse analysis that do not survive multiple comparisons correction. Accordingly, we 

have scaled back claims about prospective activation of goal locations and focused instead on the 

prospective activation of the decision point sub-goal. As shown in Figure 4E, pattern similarity is 

significantly higher for a cluster of time points that correspond roughly to increased similarity 

between P1 and P3. This finding survives multiple comparisons correction, and therefore we 

now have focused our conclusions on this finding. 

 



 

Regarding the reviewer’s second point, we acknowledge that the same stimulus is shown at P3 

on every trial. If one were to prospectively activate the item shown at P3 on every trial, we would 

expect no significant differences between converging and diverging sequences. However, our 

data suggests that, at the early stages of navigation, the hippocampus prospectively represents the 

decision point (P3) in a goal-directed manner, such that the same position is represented 

differently according to the ultimate destination. 

 

We think that this makes sense if one assumes that the hippocampus is not representing the item 

at P3, but rather it is representing the information that is relevant to reaching the goal. Note that 

P3 is the key point of uncertainty in the task, and at this position, the agent’s decision should 

dictated by the goal. For converging sequences P1-P3 similarity is driven by the fact that subjects 

are using the same goal to guide planning on the move at P3. In diverging sequences P1-P3 

similarity is still driven by those same factors, but subjects’ plans are dictated by different goals, 

and thus result in lower pattern similarity. We have now clarified this interpretation of the results 

in the discussion section of the revised manuscript. See also Reviewer 1 Responses #1 and #2. 

 

The hippocampus represents context-specific goal information during planning Pg: 22 

 

“In contrast, in our experiment, all trials that converged on the same goal required the same key 

decision at position 3, regardless of the starting point. In this situation, it is optimal to learn a 

representation that captures the information that is common to any sequence that converges on 

the same goal. For example, as depicted in Figure 1, any trial with a tiger as the goal animal will 

require participants to choose the “down” button at position 3. In the next section, we explain 

why results from the navigation period are also consistent with this interpretation.” 

 

 

Reinstatement of remote timepoints in the hippocampus during navigation Pg. 23-24: 

 

“As noted above, the animals in the first three positions overlapped across diverging sequences, 

whereas the animals in the last three positions overlapped across converging sequences. Thus, if 

the hippocampus only represented the current state during navigation, we would have expected 

pattern similarity on the diagonal in Figure 4 to be higher for diverging trials for early time 

points, and then higher for converging trials in the later time points (see also Figure S4). Instead, 

we found that the significant differences between converging and diverging trial pairs were 

primarily off of the diagonal, suggesting that, during the navigation phase, hippocampal patterns 

carried information about behaviorally relevant remote timepoints along the route. More 

specifically, hippocampal activity patterns early in the navigation phase carried information 

about position 3 in converging trials, as compared to diverging trials. 

This pattern of results is notable because the stimulus at position 3 is exactly the same for 

all trials in all contexts, so these results could not solely reflect prospective retrieval of future 

stimuli. As noted above, the correct decision to be made at position 3 depends on one’s current 

goal and context. All converging sequences, which share the same goal, require the same 

decision at P3, whereas diverging sequences are associated with different decisions at P3 because 

they involve different goals. These results are consistent with the idea that rather than carrying 

information about sequences of upcoming states, participants were prospectively activating the 



 

most goal-relevant information in the upcoming sequence, namely the context- and goal-

appropriate decision at position 3.” 
 

6) Additionally, while the single subject maps are appreciated, it does seem that participant 

19 is perhaps driving the group effect p1 to p3, as in the other subject plots, by eyeball, 

there isn't any clear evidence of this, if anything p5 seems to be most activated. Also, are 

the corrected deltaPS values in Figure S4 significant for either V1 or BA? as they also 

show p1 to p3 effects. 

 

Response #6 

 

We are happy to provide additional visualizations to demonstrate that our effects are not driven 

by outliers. Below is a plot where we have calculated the average PS values from the timepoints 

identified using our cluster-based permutation tests from each subject. You can clearly see in this 

plot that subject 19 and also subject 15 do indeed show a larger effect in those timepoints. 

However, 13 other subjects also show modest effects during those same time points suggesting 

that this effect is consistent across participants. In other words, 20 of 23 subjects showed effects 

in the same direction—higher p1 to p3 pattern similarity for converging than for diverging 

sequence pairs. Formally, this was confirmed by conducting a Wilcoxon signed rank test on the 

single subject similarity values from the figure below. This confirmed that the majority of 

participants showed an increase in pattern similarity within these timepoints (Signed Rank = 238,  

Z = 3.042, p = 0.0024). Furthermore, we have chosen a stringent statistical test to correct for 

multiple comparisons and utilized data driven monte carlo simulations to generate our null 

distribution. These methods for assessing statistical significance are robust to outliers.  

 

 

The reviewers also asked whether the corrected deltaPS values in Figure S4 were significant for 

visual or motor cortex. In fact, in visual (cluster mass: 348.2348, p = 0.0052) and motor (cluster 

mass: 673.7853, p < 0.0001) cortex, P1-P3 pattern similarity was higher for converging than 

diverging sequences. These findings are consistent with the overall interpretation that, early in 

the trial, participants prospectively activate a representation of p3, which is the decision point. 

Single Subject Similarity at Significant Timepoints
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We believe that the increased off-diagonal pattern similarity effects in visual and motor cortex 

reflects prospective activation of the relevant sensory and motor representations at p3. In other 

words, participants likely are predicting the animal at p3 and the button press that will be made at 

p3 in order to navigate to the goal. This type of predictive coding has been shown in primary 

sensory areas in past work and is a possible mechanism for the effects that we observe here 

(Hindy et al., 2016, Clarke et al., 2021).  

 

We have adjusted the supplement figure to more closely mirror the hippocampal figure (outlined 

significant clusters in Red) in the manuscript. In addition, we have added associated p-values 

with the clusters to the supplemental figure caption. We hope that this addresses Reviewer #2’s 

concerns and provide clarification on the interpretation of our results.  

 

7) Comment (without having any personal stake in the validity of SR or any other theory): is 

it possible that with short and/or 'linear' routes, like in this task, there is no need to 

represent an elaborate transition structure? Perhaps if the sequence was longer or 

involved multiple choice points, the convergent/divergent effects would change. 

Relatedly, previous studies on hippocampal coding of distance often show correlations 

with differing directions - more/less hippocampal activity closer/further from the goal. 

My assumption, at least in these studies (as in Fig 3 of review by Spiers & Barry 2015 

COBS, or even Figure 2 Patai 2019 Cerebral Cortex) is that there is an effect of 

environmental complexity / path complexity that contributes to these disparate findings. 

It is possible that the structure of the decision or state or physical space will have 

profound effects as to how the hippocampus is coding the relevant goal information. 

 

Response #7 

 

We thank Reviewer 2 for these insightful comments and questions. We agree with this reviewer 

that in larger decision spaces it is likely inefficient to represent an elaborate transition structure 

(See Baluger et al., 2016). Based on our hippocampal navigation data, we would predict that, 

instead of representing an elaborate transition structure, the hippocampus would preferentially 

represent actions taken at key decision points, in relation to the subjects’ current goals. This 

prediction could not be tested in the present paradigm, but we plan to test it in future work 

involving navigation in more complex contexts with multiple choice points. In addition, we 

agree that that the structure of the task or state space will have profound impacts on goal 

representation in the hippocampus and in interconnected cortical networks (see Ekstrom & 

Ranganath, 2018). 

 

Regarding distance to goal coding, akin to Spiers and Barry 2015 and Patai 2019, we do find that 

univariate activity in the anterior hippocampus increases as participants traverse the sequence. 

These data were not included in the manuscript because, as Reviewer 2 states, these effects have 

been shown elsewhere. 

 

Based on the reviewer’s suggestion, we have added the following sentences to the discussion:  

 

Discussion Pg. 25-26: 

 



 

“It is possible that in the relatively small and deterministic state space used in our task, it is not 

advantageous to represent an elaborate transition structure. In larger decision spaces, our data 

would suggest that during navigation the hippocampus would be involved in activating memories 

for key decision points towards a goal. An alternative approach to account for the present results 

would be to use a model that places heavier emphasis on context instead of only the next item or 

next decision. One model, the “clone-structured cognitive graph” model (George et al., 2021), is 

able to learn “clones” of similar observations that are distinguished by the current context. We 

predict that that models that take into account context and goals, like the model presented in 

George et al., will be better able to capture the nuances of our task.” 

 

8) For the TR analysis, were there any effects of the repetition of sequences across runs? 

Did earlier vs later repetitions show differing effects on the converging/diverging 

sequence analysis? I understand the sequences were very well learned, but it would be 

curious to know how repeating sequences affects the hippocampal representation. 

Relatedly, I assume the answer is yes, but just to check, were the 8 within context 

sequences presented in a block also counterbalanced? That is, it didn't always start with 

zebra to tiger etc. And equally, there wasn't any grouping of routes that were 

subsequently defined as convergent/divergent? 

 

Response #8 

 

We thank the reviewer for this comment. We apologize if the counterbalancing approach used in 

our experiment was unclear and have added text to the main results section. To clarify, 

sequences were counter balanced across blocks So that the order of the sequences was different 

in each block. In addition, each block had a unique combination of individual sequences that 

were presented. E.g. block 1 had seq 1, 2, 4, 5, 6, 7, 8. Block 2 had seq 4, 8, 9, 12 etc.  

 

The following sentence was added to the methods section Pg. 30: 

In addition, the order of sequences within each context was counter-balanced across blocks to 

ensure no systematic ordering effects influenced our results. 

 

Related to the above point, the counterbalancing was done in a way to maximize our capabilities 

to do between run pattern similarity. Thus, sequence repetitions are not evenly spaced across 

blocks and it would be difficult to look at changes in PS values across runs in a balanced way. 

For example, the zebratiger sequence may be presented in context 1 in the first run. Then would 

not be presented again until the 4th, 5th, and 6th runs. In this example, this would force us to only 

examine pattern similarity for that sequence in late blocks.  

 

In addition, all PS values presented in this manuscript are calculated between run in order to 

avoid temporal autocorrelation that may artificially inflate PS values (e.g. Hendrickson et al., 

2015). As a result, the different repetitions (both early and late) contribute to PS values presented 

here and PS cannot be evaluated effectively in our design for a targeted repetition pair. It is an 

interesting empirical question to better understand how hippocampal representations evolve over 

the course of learning. We hope that future researchers can investigate this question.  

 

Reviewer #3 (Remarks to the Author): 



 

 

The authors present a very interesting and timely study of how goal-oriented representations in 

the human hippocampus manifest in spatially-grounded sequence processing. In particular, they 

tackle the question of how overlap affects the expression of these codes, and their results suggest 

that 1) hippocampal representations of future states emerge in a context-bound manner and 2) 

their expression is modulated in a dynamic way by how the memory crosses paths with others. 

 

I was generally very enthusiastic about this work, and the methods employed (which were 

largely clearly presented as well), and the bigger questions it addresses in the literature. I did 

have several comments and concerns on interpretational and methodological points that I believe 

could strengthen the manuscript further when addressed. 

 

We appreciate the reviewer’s enthusiasm for our work and we appreciate their helpful comments. 

We have addressed their suggestions below and we have modified our manuscript to address 

these issues. 

 

1) I think when the authors argue for a positive modulation of similarity by goal that can’t 

be explained by modulation by shared motor plans, they could test for a significant 

interaction between the two goal and move-set dimensions to formally demonstrate that 

the modulation is more strongly driven by the goal representation in a specific context 

than the move sequence. However, I would also add that I’m not sure a null interaction 

(should that be the case) would detract much from the manuscript. This is because 

although move sequences are motoric, they also correspond to location and heading 

shifts, which are reflected in the behavior of some neurons of the hippocampal system in 

rodents. 

 

Response #1 

 

We appreciate this reviewer’s suggestion to help us strengthen one of the main findings of the 

paper. However, we are not able to complete this analysis exactly as the reviewer suggested. In 

order to fit a model that has additional regressor for move-set it would require us to look across 

contexts. This is because within a context diverging and converging sequences are perfectly 

colinear with the move-set dimension. This is by design and allows us to control for visual 

similarity, but by doing so were not able to fully control for motor sequence similarity.  

 

As this reviewer mentioned, we attempted to investigate the impact of motor overlap on the 

similarity structure observed in our data in Figure S2. We were able to demonstrate that 

similarity cannot be solely explained by motor overlap and this model shows no significant main 

effects nor significant interactions. To attempt to address this reviewers concern, we have 

conducted one follow-up test on Same Moves Same Context (equivalent to Same Sequence 

Same Context) compared to Same Moves Different Context in our Bilateral Hippocampal ROI 

(See Figure S2B). This contrast specifically tests for the impact of moves on goal 

representations. If the goal representations we observed in the data were only driven by 

movement information we should see no difference between these two conditions. This test 

revealed a numerically different but non-significant difference between the conditions (Same 

Move Same Context > Same Move Different Context: z = 1.68, p = 0.093). As a positive control 



 

we also ran this same contrast in our primary motor ROI. Here we would expect no modulation 

by context because this region should only be driven by motor information and not goal 

information. Indeed, we observe no significant difference between Same Move Same Context 

and Same Move Different Context (z = 0.80, p = 0.43). 

 

We interpret these findings as the hippocampus being somewhat driven by move similarity but 

also by goal information. However, the null difference between Same Moves Same Context vs. 

Same Moves Different Context is especially difficult to interpret. Like this reviewer mentioned, 

this is due to the fact that the shared moves across contexts are not exactly equivalent. Moves 

across contexts are different in both their position and heading shifts. We have omitted this 

contrast from the manuscript and feel that our primary control analyses are sufficient to address 

this reviewers concern. 

 

2)  This reasoning led me to a related comment: did the authors consider testing a more 

hierarchical coding perspective? Akin to McKenzie …Eichenbaum, 2014, it seems highly 

likely that even if there is a relative dominance of goal coding, it could be quite 

informative to think about how this is modulated but “subordinate” representations of 

other dimensions of the task. 

 

Response #2 

 

We appreciate this reviewers’ interest in our work and their suggestion to investigate more 

hierarchical representations that may be present in the data. In response to this suggestion, we 

have completed an analysis akin to Mckenzie et al., 2014 below.  

 

  

We averaged pairwise correlation matrices within conditions (e.g. Zebra Tiger Cx. 1 Rep. 1, Rep 

2. etc.) and across participants to create a group-level condition by condition similarity matrix 

that was sorted by context. As can be seen in panel A and B, we did not find clear evidence of a 

hierarchical representation in the group level matrices. To further visualize this effect and look 

for the possibility of a more hierarchical coding scheme (goals nested within contexts), we then 

constructed a dendrogram. This dendrogram was constructed using the unweighted average 

distance (Pearson’s) between our conditions. Interestingly, this revealed some notable examples 



 

of sequences that share the same goal being part of neighboring leaves. However, it is not 

apparent from these visualizations alone that there are sub-clusters of sequences that share the 

same goal. This pattern of results neither refutes nor clearly supports the possibility that there is a 

hierarchal coding withing the hippocampus. It is important to note that this analysis is done on 

average correlation matrices and doesn’t account for individual differences in sequence 

representations. Moreover, one of our main findings (Figure 2D) is that the there is a 

heterogeneous effect of context. Where sequences that share the same goal are grouped together 

within the same context while sequences that do not have the same goal are not as strongly 

impacted by context. 

 

3)  Were timecourses time-shifted for interpretation of when representational information 

emerged? That is, when the authors attribute a TR pattern to time position 3, is that 

adjusted for lag in the hemodynamic response that state (say, taking ~TR 3 after position 

3)? 

 

Response #3 

 

We thank the reviewer for this comment and apologize if this was unclear in the manuscript. To 

clarify, pattern similarity values in our TR by TR analyses were manually lagged by 4 TRs (TR = 

1.22, Inter-Item-Interval = 5s) to account for the hemodynamic response lag. This information 

can be found in the methods under the TR by TR analysis section. We have added the following 

text to the figure 4 caption to help other readers better understand our analyses.  

 

“Trial labels were manually lagged by 4 TRs (TR = 1.22, Inter-Item-Interval = 5s) to account for 

hemodynamic response lag.”  

 

4) A related comment is that the authors describe these (very interesting!) timecourse 

outcomes as “the first item in the sequence activating the central position” -> yet 

directionality cannot be assessed from this alone. This is interesting to consider, because 

it is noteworthy that it is for the diverging routes, more so than the converging routes, that 

there is an alternative decision about future state 3 that could be prospectively made at 

time 1. At least, computing this sequence element in advance may be more behaviorally-

beneficial than look-ahead to a choice that simply leads to the same stimulus regardless 

of route (the converging scenario). Could their pattern similarity outcome instead reflect 

a representation of the alternative starting path at the point in the environment where they 

intersect (that is, when arriving at state 3, a representation of the other memory leading to 

this state is elicited)? In theory, I do think the high p1-p1 similarities for converging 

routes speak against this prior notion somewhat, however (but please see next comment). 

 

Response #4 

 

We thank this reviewer for their enthusiasm for our results and their thoughtful comments. It is 

interesting to consider that in the converging condition the similarity we observe is driven by 

some common process that is evoked at P3 that reflects the differential paths that led to their 

current positions. Below we attempt to lay out our interpretation of these results.   

 



 

Our perspective is that at P1 both converging and diverging sequences should be activating P3. 

However, based on our results we hypothesize that activity patterns evoked by P3 do not only 

contain P3 information. Rather, they also include pattern information related to their ultimate 

goal (P5) and also possibly other sensorimotor information important for realizing that goal. For 

converging sequences P1 P3 similarity is driven by the fact that subjects are all 

planning/predicting/moving to the next stimulus in a similar way across repetitions of that 

sequence. In diverging sequences P1 P3 similarity is still driven by those same factors, but 

subjects’ plans/predictions/moves lead to divergent outcomes and thus result in lower pattern 

similarity. 

 

We have added a few sentences to the discussion and results to clarify the above logic (See also 

Reviewer 2 Response #5 and Reviewer 1 Response #1 and #2). We hope that this addresses this 

Reviewer # 3’s comment. 

 

Reinstatement of remote timepoints in the hippocampus during navigation Pg. 23-24: 

 

“As noted above, the animals in the first three positions overlapped across diverging sequences, 

whereas the animals in the last three positions overlapped across converging sequences. Thus, if 

the hippocampus only represented the current state during navigation, we would have expected 

pattern similarity on the diagonal in Figure 4 to be higher for diverging trials for early time 

points, and then higher for converging trials in the later time points (see also Figure S4). Instead, 

we found that the significant differences between converging and diverging trial pairs were 

primarily off of the diagonal, suggesting that, during the navigation phase, hippocampal patterns 

carried information about behaviorally relevant remote timepoints along the route. More 

specifically, hippocampal activity patterns early in the navigation phase carried information 

about position 3 in converging trials, as compared to diverging trials. 

This pattern of results is notable because the stimulus at position 3 is exactly the same for 

all trials in all contexts, so these results could not solely reflect prospective retrieval of future 

stimuli. As noted above, the correct decision to be made at position 3 depends on one’s current 

goal and context. All converging sequences, which share the same goal, require the same 

decision at P3, whereas diverging sequences are associated with different decisions at P3 because 

they involve different goals. These results are consistent with the idea that rather than carrying 

information about sequences of upcoming states, participants were prospectively activating the 

most goal-relevant information in the upcoming sequence, namely the context- and goal-

appropriate decision at position 3.” 
 

 

5) Yet, it is also troubling that in both the converging and diverging cases the pattern 

similarity is high early (e.g., p1-p1) but declines uniformly forward in time even on the 

diagonal (also relevant to my query about time-shifting in the analysis). This also results 

in little evidence of the goal or “goal arm sequence” itself being instantiated earlier (i.e., 

p1-end similarity). This result from the time course analysis suggests the main trial-level 

analysis results using LSA may be tracking an early abstracted state in the trial more than 

a representation that is present at the goal itself. I found this difficult to interpret, even 

though I agreed with the authors’ statements to the effect that the data seemed to be about 

an abstract goal more than specific stimuli. 



 

 

This fading in similarity later in the trial, even in a converging arm case where the goal 

and items could be the same) did leave me wondering if there is a chance there could be 

an impact of the TR-by-TR FIR modeling approach. Although the FIR predictors are not 

fit sequentially (that I can tell) – could later points in the time window are more driven by 

noise than signal, perhaps due to an artifact of some structure in the collinearity of the 

FIR hrf predictors? Some deeper discussion of this pattern in the results, and perhaps 

potential impact of modeling could strengthen the arguments made. 

 

Response #5 

 

We understand Reviewer 3’s point about the decline in pattern similarity over the course of 

sequence navigation, and appreciate the chance to clarify this issue. As we note in the 

introduction, previous fMRI studies have investigated representations of state spaces during 

incidental exposure to specific task states (e.g., during a task involving decisions about particular 

stimuli) or exposure to passively learned sequences with precise timing. To our knowledge, no 

prior fMRI studies have utilized active, self-initiated navigation through a state-space. The 

reason, we suspect, is that the timing of cognitive activities is less constrained during self-

initiated navigation. At the beginning of a trial during the planning period, it is likely that all 

participants generated a mental model of their key moves in their plan to reach the goal for the 

trial, but the exact timing of processes related to prospection and planning during navigation is 

likely to vary significantly across individuals (we note that work on individual differences in 

proactive vs. retroactive control is relevant to this point; cf. Braver et al., JoCN, 2021). This, plus 

the considerable overlap of states within the diverging sequence pairs, makes it remarkable that 

any significant differences were seen in the time course analysis. We would be happy to add 

some discussion of this issue to the supplementary materials or the main body of the manuscript 

if Reviewer 3 believes that it would be helpful. 

 

With regard to the second point concerning goal-arm coding, we now take a more conservative 

approach in our revised manuscript. Based on comments from this reviewer and from Reviewer 

1, we no longer make conclusions about prospective activation of the goal representation during 

navigation. Instead, we focus on the finding that survived multiple comparisons correction, 

which is that there was significantly greater activation of P3 during converging trials than during 

diverging trials. We conclude that this reflects the fact that P3 is the critical position where one’s 

decision is dictated by the current goal. Rather than activating the stimulus at P3 (which is 

common to all sequences), we believe participants are retrieving P3’s relationship to the goal in 

the current zoo context. See also Reviewer 2 Response #5 and Reviewer 1 Response #2 for a 

more detailed discussion of the theoretical logic that supports this idea. 

 



 

Finally, the reviewer was concerned that that the results might have been systematically affected 

by the FIR modeling approach. The short answer is that there is no aspect of the modeling 

procedure that would systematically reduce pattern similarity values at later time points, relative 

to values for earlier timepoints. To clarify this issue, we have provided a deeper dive into the 

analysis procedure. The elements of the FIR basis set are, indeed, fitted simultaneously to the 

data, not in a stepwise fashion. We have provided an example single trial model matrix and 

corresponding model diagnostics to help illustrate the procedure. 

 

As shown in the collinearity matrix, there was not a systematic difference in collinearity between 

FIR regressors modeling activity early- vs. late- in the trial. To measure the effect of collinearity 

in our model estimates we used a metric called variance inflation factor (VIF) (Belsley et al., 

1980). This metric is calculated by predicting a held out regressor from the remainder of the 

design matrix. As can be seen in the above figure in the bottom panel, the variance inflation 

factor is approximately equal throughout the sequence timepoints being modeled that are used in 

RSA. The collinearity values for the FIR regressors of interest are well within the normal range 

that would enable us to obtain stable estimates of activity. These results indicate that our model 

is equally able to capture variance associated with early and late timepoints in the sequence 

(Mumford et al., 2015).  

 

Reviewer 3 Figure 1 – Single subject design matrix and model diagnostics for FIR modelling approach. Top Left Panel: A 

single subject design matrix for one sequence modelled with our FIR approach. The orange, green and red bars highlight 

parameters associated with current sequence being modelled, nuisance regressors, and motion parameters respectively. Top 

Right Panel: A parameter by parameter collinearity matrix measured with cosine similarity. The lower left and diagonal 

elements have been excluded to aid in visualization. Values of 0 illustrate orthogonal regressors whereas values closer to 1 

illustrate a degree of collinearity. The orange box outlines the rows of the matrix that are associated with the sequence being 

modeled. Bottom Panel: Variance inflation factor as a function of individual parameters. The orange bar is intended to direct 

the reviewer to timepoints that are used in RSA. Note that parameters associated with the sequence being modeled have 

relatively stable VIF and are within commonly held standards within the literature (Mumford et al., 2015). 



 

We have added the following sentences to the methods section and hope that our detailed vetting 

of our method satisfies this reviewer.  

 

Methods Pg. 36: 

 

“Collinearity in our model was measured using the variance inflation factor (VIF) and was 

verified to be within acceptable levels according to standard in the literature (Mumford et al., 

2015).” 

 

Minor: 

6) In the methods, the authors describe the timeseries analysis as yielding “72 voxel 

timeseries” but I believe this is a typo 

 

Response #6 

 

We thank this reviewer for comment. Each sequence had 4 repetitions throughout the 

experiment, where one of them was a “catch” trial where the trial ended after position 3. These 

“catch” were excluded from both the cue period and navigation analyses, resulting in 3 

repetitions of each sequence. See Clarke et al., 2021 for an empirical study examining these 

trials. There were 12 sequences in each context and 2 contexts which results in 72 unique trials 

for us to model using the FIR method discussed in the methods section. We added the following 

sentences to the methods section to make our analysis approach more clear: 

 

Pg. 7 Results Section:  

 

“In addition, one trial from each sequence was randomly chosen to end early at the rabbit (Catch 

Trials). This resulted in 72 sequences that could be analyzed.” 

  

7) I thought it could be worth a Discussion sentence or two juxtaposing the current study 

results more directly with the Chanales… Kuhl 2017 paper, which the authors did cite. 

Despite some differing outcomes, the there are a lot of structural similarities in the 

environment, and a small comment on this may prompt formal comparative research 

ideas. 

 

Response #7 

 

We agree that the work presented in Chanales et al., 2017 is highly relevant to the current study. 

We have now added the following paragraph to the discussion section juxtaposing this work and 

other related work that has structural similarities to our own.  

 

Discussion Pg 21: 

 

“Our findings are also relevant to past work that has examined how the brain represents 

routes with multiple paths or that are hierarchical in nature (Brown et al., 2014; Balaguer et al., 

2016; Chanales et al., 2017). These studies show that activity in the hippocampus is higher when 

planning and navigating an overlapping route and that, during navigation, univariate bold signal 



 

is modulated by distance to a goal. In one study, Chanales et al. (2017) show that representations 

of overlapping spatial routes become dissimilar over learning. This is potentially at odds with the 

current findings, where we find that routes that overlap in their goal show higher pattern 

similarity compared to routes that do not share a goal. However, participants in Chanales et al. 

(2017) passively viewed pictures along routes, whereas participants in our task actively 

navigated the state space. As mentioned earlier, rodent studies suggest that hippocampal spatial 

coding can shift dramatically between goal-directed behavior and random foraging in the same 

context. Moreover, in Chanales et al. (2017) it would make sense for participants to differentiate 

overlapping routes because they did not include sequences that converged on the same goal. 

Thus, it would be optimal to learn a unique representation for each spatial route in order to 

predict the outcome. In contrast, in our experiment, all trials that converged on the same goal 

required the same key decision at position 3, regardless of the starting point. In this situation, it is 

optimal to learn a representation that captures the information that is common to any sequence 

that converges on the same goal. For example, as depicted in Figure 1, any trial with a tiger as 

the goal animal will require participants to choose the “down” button at position 3. In the next 

section, we explain why results from the navigation period are also consistent with this 

interpretation.” 

 



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

The revised manuscript is much improved and I commend the authors on their efforts. I particularly 
appreciate the thorough revision of the introduction, as well as the points of clarification and the 
additional analyses. The authors have addressed all of my concerns. 

Reviewer #2 (Remarks to the Author): 

Thank you for the detailed replies. All my questions/ requests have been addressed. 

Reviewer #3 (Remarks to the Author): 

I would like to thank the authors for their very thorough response to my comments and critiques. 
Overall, I feel the comments were fully and conscientiously addressed. Elements of the response 
such as the visualization of the collinearity structure for the FIR, and added juxtaposition with other 

work using similar designs, were quite useful. 

I had a couple of minor comments for this revised manuscript: 

1) In response to R3 comment #5, the authors did a nice job unpacking and explaining both the 

theoretical and methodological points related to their results and interpretations. Early in this response 
they noted the critical issue of the variable timing of cognitive processes themselves and how this 

may intersect with state overlap to obfuscate significant outcomes in the timecourse analysis. They 
offered to put some discussion of this in the main text or supplement if useful – I do think they raise a 

very important consideration for interpreting the results and comparing with other tasks, particularly 
since the timing of certain cognitive processes may differ between subjects, conditions, and different 
stages of experience with the task. I would recommend adding this to the discussion or supplement. 

2) One small thing that caught my eye about this discussion point in the response letter was the 

statement that “previous fMRI studies have investigated representations of state spaces during 
incidental exposure to specific task states (e.g., during a task involving decisions about particular 
stimuli) or exposure to passively learned sequences with precise timing. To our knowledge, no prior 

fMRI studies have utilized active, self-initiated navigation through a state-space.” – I’m not sure I 
would characterize many of the prior efforts in this area as passive sequence learning tasks. Most that 

I am aware of require explicit, feedback-based acquisition of the routes based on route response 
errors and relationships between locations of interest. I note this more-so in case the authors choose 
to make a similar statement in revision, but not in disagreement of the overall point about pinning 

down neural representations associated with freely evolving cognitive states (which I think is a very 
important one) 



REVIEWER COMMENTS (in black) and Responses (in blue) 
 
We appreciate the reviewers’ careful consideration of our manuscript and their thoughtful 
comments on how to improve our work. We have addressed all remaining comments and have 
incorporated these changes into our manuscript, as indicated below.   

 
Reviewer #1 (Remarks to the Author): 
  

1) The revised manuscript is much improved and I commend the authors on their efforts. I 
particularly appreciate the thorough revision of the introduction, as well as the points of 
clarification and the additional analyses. The authors have addressed all of my concerns. 

 
Response #1  
We thank this reviewer for their constructive comments and the opportunity to improve the 
manuscript. 
 
 
Reviewer #2 (Remarks to the Author): 
 
1) Thank you for the detailed replies. All my questions/ requests have been addressed. 
 
Response #1 
We would like to thank Reviewer #2 for their comments and appreciate their interest in our 
work.  
 
Reviewer #3 (Remarks to the Author): 
 
I would like to thank the authors for their very thorough response to my comments and critiques. 
Overall, I feel the comments were fully and conscientiously addressed. Elements of the response 
such as the visualization of the collinearity structure for the FIR, and added juxtaposition with 
other work using similar designs, were quite useful. 
 
I had a couple of minor comments for this revised manuscript: 
 
1) In response to R3 comment #5, the authors did a nice job unpacking and explaining both the 
theoretical and methodological points related to their results and interpretations. Early in this 
response they noted the critical issue of the variable timing of cognitive processes themselves 
and how this may intersect with state overlap to obfuscate significant outcomes in the timecourse 
analysis. They offered to put some discussion of this in the main text or supplement if useful – I 
do think they raise a very important consideration for interpreting the results and comparing with 
other tasks, particularly since the timing of certain cognitive processes may differ between 
subjects, conditions, and different stages of experience with the task. I would recommend adding 
this to the discussion or supplement. 
 
Response #1 
 



We agree with Reviewer 3’s point that the timing of cognitive processes is critical for the 
interpretation of our time course similarity analyses. Like this reviewer mentioned, there are 
likely differences across trials within a participant and across participants for when a plan or 
action is initiated. One important distinction we would like to point out is that participants were 
trained to 85% criterion outside of the scanner. Because of this, we think that experience with 
the task has a negligible impact on the timing of the cognitive processes observed in our task. 
We have added the following text to the discussion section to highlight these points and help 
readers better interpret our results.  
 
 
Added to discussion pages 23-24: 

As noted above, the animals in the first three positions overlapped across diverging 
sequences, whereas the animals in the last three positions overlapped across converging 
sequences. Thus, if the hippocampus only represented the current state during navigation, we 
would have expected pattern similarity on the diagonal in Figure 4 to be higher for diverging 
trials for early time points, and then higher for converging trials in the later time points (see 
also Figure S4). If participants solely retrieved past states during navigation, we would expect 
off-diagonal pattern similarity to be higher for diverging sequences than converging sequences 
(because the first three positions were common for the diverging sequences). Our data were 
inconsistent with both of these accounts. Instead, we found that off-diagonal pattern similarity 
was higher for converging than for diverging trial pairs, suggesting that hippocampal activity 
patterns carried information about future timepoints during navigation.  

The significant cluster of increased pattern similarity for converging, relative to 
diverging, sequences was consistent with the interpretation that, at the outset of the 
navigation phase, participants prospectively activated a representation of position 3. This result 
is notable for two reasons. First, participants were engaged in active, self-initiated navigation, 
and as such, we would expect considerable variability in the timing of prospective coding across 
trials and across subjects. The fact that prospective coding of position 3 (as indicated by off-
diagonal pattern similarity) was nonetheless reliable across participants attests to the 
significance of this position to successful task performance. Second, the finding is notable 
because the stimulus at position 3 is exactly the same for all trials in all contexts. Thus, the 
disproportionate representation of position 3 across convergent sequences could not solely 
reflect the identity of the stimulus itself.  

As noted above, the correct decision to be made at position 3 depends on one’s current 
goal and context. All converging sequences share the same decision at position 3 because they 
share the same goal, whereas diverging sequences are associated with different decisions at 
position 3 because they involve different goal states. These results are consistent with the idea 
that participants prospectively activated the most goal-relevant information in the upcoming 
sequence, namely the context- and goal-appropriate decision at position 3. 
 
Added to discussion page 27:  
“We believe that hippocampal representations of physical space (Ekstrom and Ranganath, 
2017) and abstract state spaces (Boorman, Sweigert, and Park, 2021) are flexible, reflecting the 
computational demands of the planning problem, and the subject's understanding of, and 



experience with, the problem. In the present study, the task might have encouraged a model-
based planning strategy in which future goals and key states are strategically retrieved and 
represented in hippocampus. In cases where learning is passive and incidental to the task, or 
when transitions between states change unpredictably, hippocampal state spaces might 
instead resemble successor-based maps. Finally, in more complex tasks, participants might 
adopt different strategies with varying degrees of emphasis on goal-relevant information (See 
Eldar et al., 2020).” 
 
2) One small thing that caught my eye about this discussion point in the response letter was the 
statement that “previous fMRI studies have investigated representations of state spaces during 
incidental exposure to specific task states (e.g., during a task involving decisions about particular 
stimuli) or exposure to passively learned sequences with precise timing. To our knowledge, no 
prior fMRI studies have utilized active, self-initiated navigation through a state-space.” – I’m not 
sure I would characterize many of the prior efforts in this area as passive sequence learning 
tasks. Most that I am aware of require explicit, feedback-based acquisition of the routes based on 
route response errors and relationships between locations of interest. I note this more-so in case 
the authors choose to make a similar statement in revision, but not in disagreement of the overall 
point about pinning down neural representations associated with freely evolving cognitive states 
(which I think is a very important one)  
 
Response #2  
 
We thank the reviewer for this point and will clarify our reasoning here as we do not intend to 
add anything more relating to this point beyond what is discussed in Reviewer 3 Response #1. 
Characterizing past work as “passive sequence learning” is not an accurate description of past 
work and we note that there are several other works where state spaces have been employed (e.g. 
Schapiro et al., 2016, Kurth-Nelson et al., 2016, Constantinescu et al., 2016). However, these 
studies either employ passive learning, do not use fMRI, or do not report this effect. The purpose 
of this comment was to distinguish ourselves from past work and to illustrate the importance of 
studying cognitive processes as they freely evolve during behavior. 
 
 


